In vitro exposure to thiacloprid-based insecticide formulation promotes oxidative stress, apoptosis and genetic instability in bovine lymphocytes.

In this study, bovine peripheral lymphocytes were incubated with different concentrations of this formulation (10; 30; 60; 120 and 240 μg.mL-1) for 4 h to address the potential cytotoxic and genotoxic effects of the insecticide. Insecticide formulation treatment resulted in decreased cell viability and proliferation, p53-mediated cell cycle arrest at the G0/G1 phase, and apoptosis induction accompanied by elevated levels of mitochondrial superoxide and protein carbonylation. Oxidant-based DNA damage and DNA damage response (DDR) were also observed, namely the formation of micronuclei, DNA double-strand breaks and slightly elevated recruitment of p53 binding protein (53BP1) foci. Our results contribute to the elucidation of insecticide effects on animal lymphocyte cultures after short-term exposure. Due to increased application of neonicotinoids worldwide, resulting in both higher yields and adverse effects on non-target animals and humans, further in vivo and in vitro experiments should be performed to confirm their cytotoxic and genotoxic activities during short-term exposure. PMID: 31533058 [PubMed - as supplied by publisher]
Source: Toxicology in Vitro - Category: Toxicology Authors: Tags: Toxicol In Vitro Source Type: research