Characterizations and application of CA/ZnO/AgNP composite nanofibers for sustained antibacterial properties

Publication date: December 2019Source: Materials Science and Engineering: C, Volume 105Author(s): Abdul Wahab Jatoi, Ick Soo Kim, Hiroshi Ogasawara, Qing-Qing NiAbstractAlthough silver based nanofibers possess excellent bactericidal and bacteriostatic characteristics. However, excess release/contact with silver may induce harmful side-effects including carcinoma, argyria, argyrosis and allergies. Similarly, silver depletion may limit prolonged antibacterial activities as well. Thus present research proposes electrospun CA/ZnO/AgNPs composite nanofibers for biologically safer and sustained antibacterial applications. The ZnO/AgNPs were synthesized using dopamine hydrochloride (Dopa) as reducing agent to immobilize AgNPs on ZnO nanoparticles. A simple solution-mixing procedure effectively generated AgNPs on ZnO nanoparticles. Strong adhesive characteristics of Dopa initiate adsorption of silver ions on ZnO nanoparticle surfaces and its metal ion reducing properties generate AgNPs. Additionally, the Dopa mediation generates strongly adhered AgNPs. The ZnO/AgNPs were used to fabricate CA/ZnO/AgNPs nanofibers. Characterization techniques, XRD, XPS, TEM, FTIR and SEM confirmed synthesis of nanocomposites. Crystallite sizes of ZnO and AgNPs calculated by Debye-Scherrer equation were 17.85 nm and 11.68 nm respectively. Antibacterial assays confirmed CA/ZnO/AgNP's effectiveness in growth inhibition of E. coli and S. aureus strains on agar plate and in liquid medium. The nanofiber ...
Source: Materials Science and Engineering: C - Category: Materials Science Source Type: research