Induction of Neuroinflammation and Neurotoxicity by Synthetic Hemozoin.

In this study, we determined whether a synthetic form of hemozoin (sHZ) produces neuroinflammation and neurotoxicity in cellular models. Incubation of BV-2 microglia with sHZ (200 and 400 µg/ml) induced significant elevation in the levels of TNFα, IL-6, IL-1β, NO/iNOS, phospho-p65, accompanied by an increase in DNA binding of NF-κB. Treatment of BV-2 microglia with sHZ increased protein levels of NLRP3 with accompanying increase in caspase-1 activity. In the presence of NF-κB inhibitor BAY11-7082 (10 µM), there was attenuation of sHZ-induced release of pro-inflammatory cytokines, NO/iNOS. In addition, increase in caspase-1/NLRP3 inflammasome activation was blocked by BAY11-7082. Pre-treatment with BAY11-7082 also reduced both phosphorylation and DNA binding of the p65 sub-unit. The NLRP3 inhibitor CRID3 (100 µM) did not prevent sHZ-induced release of TNFα and IL-6. However, production of IL-1β, NO/iNOS as well as caspase-1/NLRP3 activity was significantly reduced in the presence of CRID3. Incubation of differentiated neural progenitor (ReNcell VM) cells with sHZ resulted in a reduction in cell viability, accompanied by significant generation of cellular ROS and increased activity of caspase-6, while sHZ-induced neurotoxicity was prevented by N-acetylcysteine and Z-VEID-FMK. Taken together, this study shows that the synthetic form of hemozoin induces neuroinflammation through the activation of NF-κB and NLRP3 inflammasome. It is also proposed that sHZ induces ROS-...
Source: Cellular and Molecular Neurobiology - Category: Cytology Authors: Tags: Cell Mol Neurobiol Source Type: research