State-unspecific patterns of whole-brain functional connectivity from resting and multiple task states predict stable individual traits

Publication date: Available online 18 July 2019Source: NeuroImageAuthor(s): Yu Takagi, Jun-ichiro Hirayama, Saori C. TanakaAbstractAn increasing number of functional magnetic resonance imaging (fMRI) studies have revealed potential neural substrates of individual differences in diverse types of brain function and dysfunction. Although most previous studies have inherently focused on state-specific characterizations of brain networks and their functions, several recent studies reported on the potential state-unspecific nature of functional brain networks, such as global similarities across different experimental conditions or states, including both task and resting states. However, no previous studies have carried out direct, systematic characterizations of state-unspecific brain networks, or their functional implications. Here, we quantitatively identified several modes of state-unspecific individual variations in whole-brain functional connectivity patterns, called “Common Neural Modes” (CNMs), from a large-scale fMRI database including eight task/resting states. Furthermore, we tested how CNMs accounted for variability in individual cognitive measures. The results revealed that three CNMs were robustly extracted under various dimensions of features used. Each of these CNMs was preferentially correlated with different aspects of representative cognitive measures, reflecting stable individual traits. Importantly, the association between CNMs and cognitive measures emerged...
Source: NeuroImage - Category: Neuroscience Source Type: research