Exercise-induced increases in the expression and activity of cardiac sarcoplasmic reticulum calcium ATPase 2 is attenuated in AMPK α2 kinase-dead mice.

Exercise-induced increases in the expression and activity of cardiac sarcoplasmic reticulum calcium ATPase 2 is attenuated in AMPKα2 kinase-dead mice. Can J Physiol Pharmacol. 2019 Jun 25;:1-10 Authors: Morissette MP, Susser SE, Stammers AN, Moffatt TL, Wigle JT, Wigle TJ, Netticadan T, Premecz S, Jassal DS, O'Hara KA, Duhamel TA Abstract Exercise enhances cardiac sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) function through unknown mechanisms. The present study tested the hypothesis that the positive effects of exercise on SERCA2a expression and function in the left ventricle is dependent on adenosine-monophosphate-activated protein kinase (AMPK) α2 function. AMPKα2 kinase-dead (KD) transgenic mice, which overexpress inactivated AMPKα2 subunit, and wild-type C57Bl/6 (WT) mice were randomized into sedentary groups or groups with access to running wheels. After 5 months, exercised KD mice exhibited shortened deceleration time compared with sedentary KD mice. In left ventricular tissue, the ratio of phosphorylated AMPKαThr172:total AMPKα was 65% lower (P < 0.05) in KD mice compared with WT mice. The left ventricle of KD mice had 37% lower levels of SERCA2a compared with WT mice. Although exercise increased SERCA2a protein levels in WT mice by 53%, this response of exercise was abolished in exercised KD mice. Exercise training reduced total phospholamban protein content by 23% in both the WT and KD mice but remained 20% high...
Source: Canadian Journal of Physiology and Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Can J Physiol Pharmacol Source Type: research