A three-dimensional (3D) printed biomimetic hierarchical scaffold with a covalent modular release system for osteogenesis

In this study, we designed an osteoid, biomimetic, hierarchical, porous HA ceramic 3D printed scaffold (3DPs). Further incorporation of a covalent, modular, controlled release system (CMR), based on Watson-Crick's complementary oligonucleotides, and was added to carry a bone morphogenetic protein-2 (BMP2) peptide. The choice of a HA biomimetic scaffold housing BMP2 protein fragments was selected to successfully promote osteogenesis both in vitro and in vivo. Scanning electron microscopy, micro-computed tomography analysis and computer fluid dynamics simulations of the 3DPs showed a uniform biomimetic hierarchical structure and an effective interior permeability. Active molecules were found bound with high stability and modular to the scaffold surface via the CMR system. After 7 days of incubation under physiological conditions, approximately 90% of active factors remained bound. Compared to control groups, the 3DPs-CMR-BMP2 group significantly enhanced cell proliferation and adhesion. Moreover, the 3DPs-CMR-BMP2 group exhibited more extensive and sustained osteogenic effects through upregulated expression of osteogenic factors and enhanced calcium deposition, as compared to study and control groups. Furthermore, ectopic osteogenesis and a critical calvarial defect model confirmed that the 3DPs-CMR-BMP2 group significantly promoted in vivo bone healing versus control. Thus, our results showed that biomimetic hierarchical 3DPs with a CMR system successfully promote cell proli...
Source: Materials Science and Engineering: C - Category: Materials Science Source Type: research