Optimization of preprocessing strategies in Positron Emission Tomography (PET) neuroimaging: A [11C]DASB PET study

Publication date: Available online 1 June 2019Source: NeuroImageAuthor(s): Martin Nørgaard, Melanie Ganz, Claus Svarer, Vibe G. Frokjaer, Douglas N. Greve, Stephen C. Strother, Gitte M. KnudsenAbstractPositron Emission Tomography (PET) is an important neuroimaging tool to quantify the distribution of specific molecules in the brain. The quantification is based on a series of individually designed data preprocessing steps (pipeline) and an optimal preprocessing strategy is per definition associated with less noise and improved statistical power, potentially allowing for more valid neurobiological interpretations. In spite of this, it is currently unclear how to design the best preprocessing pipeline and to what extent the choice of each preprocessing step in the pipeline minimizes subject-specific errors.To evaluate the impact of various preprocessing strategies, we systematically examined 384 different pipeline strategies in data from 30 healthy participants scanned twice with the serotonin transporter (5-HTT) radioligand [11C]DASB. Five commonly used preprocessing steps with two to four options were investigated: (1) motion correction (MC) (2) co-registration (3) delineation of volumes of interest (VOI's) (4) partial volume correction (PVC), and (5) kinetic modeling. To quantitatively compare and evaluate the impact of various preprocessing strategies, we used the performance metrics: test-retest bias, within- and between-subject variability, the intraclass-correlation coef...
Source: NeuroImage - Category: Neuroscience Source Type: research