Regulation of cortical blood flow responses by the nucleus basalis of Meynert during nociceptive processing

The objective of this study was to investigate the contribution of NBM to CBF responses evoked by nociceptive electrical stimuli and how it may be affected by systemic MAP. CBF was recorded in isoflurane-anesthetized rats (n = 8) using laser speckle contrast imaging, in two conditions (intact vs left NBM lesion). Electrical stimulation was applied to the sciatic nerve. Sciatic stimulation produced intensity dependent increases in MAP (p < 0.001) that were almost identical between conditions (intact vs left NBM lesion; p = 0.96). In both conditions, sciatic stimulation produced intensity dependent CBF increases (p < 0.001). After NBM lesion, CBF responses were decreased in the left somatosensory cortex ipsilateral to NBM lesion (p = 0.02) but not in the right somatosensory cortex (p = 0.46). These results indicate that NBM contributes to CBF responses to nociceptive stimulation in the ipsilateral, but not contralateral somatosensory cortex and that CBF response attenuation by NBM lesion is not compensated passively by systemic MAP changes. This highlights the importance of NBM's integrity for pain-related hemodynamic responses in the somatosensory cortex.
Source: Neuroscience Research - Category: Neuroscience Source Type: research