Vitamin C: A Natural Inhibitor of Cell Wall Functions and Stress Response in Mycobacteria.

Vitamin C: A Natural Inhibitor of Cell Wall Functions and Stress Response in Mycobacteria. Adv Exp Med Biol. 2018;1112:321-332 Authors: Syal K, Chatterji D Abstract Tuberculosis, caused by Mycobacterium tuberculosis, has re-emerged as a threat to human race. Conventional antibiotic treatments are failing due to different stress response strategies adopted by bacterial pathogens. Since time immemorial, Vitamin C is known to protect against pathogens by boosting immunity in humans. Recently, Vitamin C has been shown to directly kill M. tuberculosis including multiple drug-resistant strains by generation of oxidative radicals through Fenton's reaction. Concurrently, it inhibits (p)ppGpp-mediated stringent response thus effectively shutting down long-term survival and persistence in mycobacteria. Here, we have discussed historical perspective and recent evidences on Vitamin C-mediated inhibition of several key pathways of M. tuberculosis such as (p)ppGpp synthesis and mycobacterial cell wall function. Several cell wall components including mycolic acids are critical for mycobacterial virulence. We observed downregulation of various mycolic acids in M. smegmatis upon treatment with Vitamin C, and data have been presented here. Vitamin C has been shown to inhibit the biofilm growth as well as disrupt the formed biofilm in mycobacteria. Additionally, Vitamin C role in cell-mediated and humoral immunity has been elucidated. Vitamin C is toxi...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research