Biomaterials and gene therapy: a smart combination for MSC musculoskeletal engineering.

Biomaterials and gene therapy: a smart combination for MSC musculoskeletal engineering. Curr Stem Cell Res Ther. 2018 Dec 05;: Authors: Mesure B, Menu P, Venkatesan JK, Cucchiarini M, Velot É Abstract Musculoskeletal pathologies, especially those affecting bones and joints, remain a challenge for regenerative medicine. The main difficulties affecting bone tissue engineering are the size of the defects, the need for blood vessels and the synthesis of appropriate matrix elements in the engineered tissue. Indeed, the cartilage is an avascular tissue and consequently has limited regenerative abilities. Thanks to their self-renewal, plasticity and immunomodulatory properties, mesenchymal stem cells (MSCs) became a central player in tissue engineering, and have already been shown to be able to differentiate towards chondrogenic or osteogenic phenotypes. Whether synthetic (e.g. tricalcium phosphate) or from natural sources (e.g. hyaluronic acid), biomaterials can be shaped to fit into bone and cartilage defects to ensure mechanical resistance and may also be designed to control cell spatial distribution or differentiation. Soluble factors are classically used to promote cell differentiation and to stimulate extracellular matrix synthesis to achieve the desired tissue production. But as they have a limited lifetime, transfection using plasmid DNA or transduction via viral vector of therapeutic genes to induce the cell secretion of these fac...
Source: Current Stem Cell Research and Therapy - Category: Stem Cells Authors: Tags: Curr Stem Cell Res Ther Source Type: research