Distinct effects of early-life experience and trait aggression on cardiovascular reactivity and recovery

Publication date: Available online 4 December 2018Source: Physiology & BehaviorAuthor(s): Samir Rana, Phyllis C. Pugh, J. Michael Wyss, Sarah M. Clinton, Ilan A. KermanAbstractWe previously demonstrated independent effects of early-life experience (ELE) and trait aggression (TA) on resting heart rate (HR) and mean arterial pressure (MAP) in rats. The present study examined the effects of TA and ELE on stress-evoked cardiovascular reactivity and recovery. Pups born to Wistar-Kyoto dams were exposed to daily 180-min periods of maternal separation (MS) during the first two weeks of life, and aggression was assessed in adult offspring using the resident-intruder test. Radiotelemetry was then used to record stress-evoked HR and MAP responses in response to: strobe light, novel environment, intruder rat, or restraint. Maximal HR and MAP responses were quantified as indices of reactivity, and exponential decay curves were fitted to determine decay constants as a measure of recovery. Strobe light was the weakest stressor, evoking the lowest increases in MAP and HR, which were significantly greater in MS-exposed rats irrespective of TA. In contrast, reactivity to and recovery from exposure to a novel environment or an intruder were significantly influenced by TA, but not ELE. TA animals exhibited greater reactivity in both of these paradigms, with either decreased (novel environment) or increased (intruder) recovery. Restraint stress induced the largest changes in HR and MAP with the ...
Source: Physiology and Behavior - Category: Physiology Source Type: research