The neurophysiology of deforming spastic paresis: a revised taxonomy

Publication date: Available online 28 November 2018Source: Annals of Physical and Rehabilitation MedicineAuthor(s): Marjolaine Baude, Jens Bo Nielsen, Jean-Michel GraciesAbstractThis paper revisits the taxonomy of the neurophysiological consequences of a persistent impairment of motor command execution in the classic environment of sensorimotor restriction and muscle hypo-mobilization in short position. Around each joint, the syndrome involves 2 disorders, muscular and neurologic. The muscular disorder is promoted by muscle hypo-mobilization in short position in the context of paresis, in the hours and days after paresis onset: this genetically mediated, evolving myopathy, is called spastic myopathy. The clinician may suspect it by feeling extensibility loss in a resting muscle, although long after the actual onset of the disease. The neurologic disorder, promoted by sensorimotor restriction in the context of paresis and by the muscle disorder itself, comprises 4 main components, mostly affecting antagonists to desired movements: the first is spastic dystonia, an unwanted, involuntary muscle activation at rest, in the absence of stretch or voluntary effort; spastic dystonia superimposes on spastic myopathy to cause visible, gradually increasing body deformities; the second is spastic cocontraction, an unwanted, involuntary antagonist muscle activation during voluntary effort directed to the agonist, aggravated by antagonist stretch; it is primarily due to misdirection of the ...
Source: Annals of Physical and Rehabilitation Medicine - Category: Rehabilitation Source Type: research