Action potential shortening rescues atrial calcium alternans.

This study investigates whether pharmacological manipulation of AP morphology is a viable strategy to reduces the risk of arrhythmogenic CaT alternans. Pacing-induced AP and CaT alternans were studied in rabbit atrial myocytes using combined Ca2+ imaging and electrophysiological measurements. Increased AP duration (APD) and beat-to-beat alternations in AP morphology lowered the pacing frequency threshold and increased the degree of CaT alternans. Inhibition of Ca2+ -activated Cl- channels reduced beat-to-beat AP alternations, but prolonged APD and failed to suppress CaT alternans. In contrast, AP shortening induced by activators of two K+ channels (ML277 for Kv7.1 and NS1643 for Kv11.1) abolished both APD and CaT alternans in field-stimulated and current-clamped myocytes. K+ channel activators had no effect on the degree of Ca2+ alternans in voltage-clamped cells, confirming that suppression of Ca2+ alternans was caused by the changes in AP morphology. Finally, activation of Kv11.1 channel significantly attenuated or even abolished atrial T-wave alternans in isolated Langendorff perfused hearts. In summary, AP shortening suppressed or completely eliminated both CaT and APD alternans in single atrial myocytes and atrial T-wave alternans at whole heart level. Therefore, we suggest that AP shortening is a potential intervention to avert development of alternans with important ramifications for arrhythmia prevention and therapy. This article is protected by copyright. All rights ...
Source: The Journal of Physiology - Category: Physiology Authors: Tags: J Physiol Source Type: research