Melatonin protects against myocardial ischemia-reperfusion injury by elevating Sirtuin3 expression and manganese superoxide dismutase activity.

Melatonin protects against myocardial ischemia-reperfusion injury by elevating Sirtuin3 expression and manganese superoxide dismutase activity. Free Radic Res. 2018 Aug;52(8):840-849 Authors: Feng J, Chen X, Liu R, Cao C, Zhang W, Zhao Y, Nie S Abstract Myocardial ischemia-reperfusion (MI/R) injury is a crucial cause for mortality throughout the world. Recent studies indicated that melatonin might exert profound cardio-protective effect in MI/R injury. However, the underlying mechanisms are not completely understood. In the current study, we aimed to explore the potential effect of melatonin in the pathological process of MI/R. Both in vivo MI/R model and in vitro H9c2 cell line simulated I/R (SIR) model were applied with or without melatonin supplementation. We found that Sirtuin3 (Sirt3) expression and activity were markedly decreased under MI/R and SIR conditions. Melatonin treatment significantly increased myocardial Sirt3 expression, and alleviated MI/R-induced cardiac morphology changes and cardiac dysfunction, as well as myocardial apoptosis level. In addition, DHE and JC-1 staining results demonstrated that melatonin reduced mitochondrial reactive oxygen species (ROS) generation and restored ATP production after SIR injury via elevating Sirt3 expression. By using siRNA targeting Sirt3, we confirmed that the beneficial effects of melatonin were dependent on Sirt3, which in turn deacetylated and activated manganese superoxide d...
Source: Free Radical Research - Category: Research Tags: Free Radic Res Source Type: research