Profiles of quorum sensing (QS)-related sequences in phycospheric microorganisms during a marine dinoflagellate bloom, as determined by a metagenomic approach

Publication date: Available online 30 August 2018Source: Microbiological ResearchAuthor(s): Xinqing Huang, Jianming Zhu, Zhonghua Cai, Yongmin Lao, Hui Jin, Ke Yu, Boya Zhang, Jin ZhouAbstractThe complicated relationships among environmental microorganisms are regulated by quorum sensing (QS). Understanding QS-based signals could shed light on the interactions between microbial communities in certain environments. Although QS characteristics have been widely discussed, few studies have been conducted on the role of QS in phycospheric microorganisms. Here, we used metagenomics to examine the profile of AI-1 (AinS, HdtS, LuxI) and AI-2 (LuxS) autoinducers from a deeply sequenced microbial database, obtained from a complete dinoflagellate bloom. A total of 3001 putative AI-1 homologs and 130 AI-2 homologs were identified. The predominant member among the AI groups was HdtS. The abundance of HdtS, AinS, and LuxS increased as the bloom developed, whereas the abundance of LuxI showed the opposite trend. Phylogenetic analysis suggested that HdtS and LuxI synthase originated mainly from alpha-, beta-, and gamma-Proteobacteria, whereas AinS synthase originated solely from Vibrionales. In comparison to AI-1, the sequences related to AI-2 (LuxS) demonstrated a much wider taxonomic coverage. Some significant correlations were found between dominant species and QS signals. In addition to the QS, we also performed parallel analysis of the quorum quenching (QQ) sequences. In comparison to Q...
Source: Microbiological Research - Category: Infectious Diseases Source Type: research