Pathogenesis-Related Proteins and Peptides as Promising Tools for Engineering Plants with Multiple Stress Tolerance

Publication date: Available online 30 April 2018 Source:Microbiological Research Author(s): Sajad Ali, Bashir Ahmad Ganai, Azra N Kamili, Ajaz Ali Bhat, Zahoor Ahmad Mir, Javaid Akhter Bhat, Anshika Tyagi, Sheikh Tajamul Islam, Muntazir Mushtaq, Prashant Yadav, Sandhya Rawat, Anita Grover Pathogenesis-related (PR) proteins and antimicrobial peptides (AMPs) are a group of diverse molecules that are induced by phytopathogens as well as defense related signaling molecules. They are the key components of plant innate immune system especially systemic acquired resistance (SAR), and are widely used as diagnostic molecular markers of defense signaling pathways. Although, PR proteins and peptides have been isolated much before but their biological function remains largely enigmatic despite the availability of new scientific tools. The earlier studies have demonstrated that PR genes provide enhanced resistance against both biotic and abiotic stresses, which make them one of the most promising candidates for developing multiple stress tolerant crop varieties. In this regard, plant genetic engineering technology is widely accepted as one of the most fascinating approach to develop the disease resistant transgenic crops using different antimicrobial genes like PR genes. Overexpression of PR genes (chitinase, glucanase, thaumatin, defensin and thionin) individually or in combination have greatly uplifted the level of defense response in plants against a wide range of pathoge...
Source: Microbiological Research - Category: Infectious Diseases Source Type: research