Inhibition of GSK-3beta Signaling Pathway Rescues Ketamine-Induced Neurotoxicity in Neural Stem Cell-Derived Neurons

AbstractClinical application of anesthetic reagent, ketamine (Keta), may induce irreversible neurotoxicity in central nervous system. In this work, we utilized an in vitro model of neural stem cells-derived neurons (nSCNs) to evaluate the role of GSK-3 signaling pathway in Keta-induced neurotoxicity. Embryonic mouse-brain neural stem cells were differentiated into neurons in vitro. Keta (50  μM)-induced neurotoxicity in cultured nSCNs was monitored by apoptosis, immunohistochemical and western blot assays, respectively. GSK-3 signaling pathways, including GSK-3α and GSK-3β, were inhibited by siRNA in the culture. The subsequent effects of GSK-3α or GSK-3β downregulation on Keta-i nduced neurotoxicity, including apoptosis and neurite loss, were then evaluated in nSCNs. Finally, caspase and Akt/ERK signal pathways were further examined by western blot to evaluate the regulatory effect of GSK-3 signaling pathways on Keta-induced neural injury. Keta (50 μM) caused markedly nSC N apoptosis and neurite degeneration in vitro. Keta decreased GSK-3β phosphorylation, but had no effect on GSK-3α phosphorylation. SiRNA-induced GSK-3β downregulation rescued Keta-induced neurotoxicity in nSCNs by reducing neuronal apoptosis and preventing neurite degeneration. On the other hand, GSK-3α downregulation had no effect on Keta-induced neurotoxicity. Western blot showed that, in Keta-injured nSCNs, GSK-3β downregulation reduced Caspase-1/3 proteins, but left phosphorylated Akt/ERK u...
Source: NeuroMolecular Medicine - Category: Neurology Source Type: research