Protective effect of cyanidin-3-O-glucoside on neonatal porcine islets

In this study, we determined whether C3G could protect neonatal porcine islets (NPI) from reactive oxygen species (H2O2)-induced injury in vitro and promote the function of NPI in diabetic mice. We found that C3G had no deleterious effect on NPI and that C3G protected NPI from damage induced by H2O2. Significantly higher hemeoxygenase-1 (HO1) gene expression was detected in C3G-treated NPI compared to untreated islets before and after transplantation (P < 0.05). Western blot analysis showed a significant increase in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K/Akt) proteins in C3G-treated NPI compared to untreated islets. C3G induced the nuclear translocation of nuclear erythroid 2-related factor 2 (NRF2) and the significant elevation of HO1 protein. Recipients of C3G-treated NPI with or without C3G-supplemented drinking water achieved normoglycemia earlier compared to recipients of untreated islets. Mice that received C3G-treated islets with or without C3G-supplemented water displayed significantly lower blood glucose levels at 5–10 weeks post-transplantation compared to mice that received untreated islets. Mice that received C3G-treated NPI and C3G-supplemented drinking water had significantly (P < 0.05) lower blood glucose levels at 7 and 8 weeks post-transplantation compared to mice that received C3G-treated islets. These findings suggest that C3G has a beneficial effect on NPI through ...
Source: Journal of Endocrinology - Category: Endocrinology Authors: Tags: Research Source Type: research