BAG-1L Protects SH-SY5Y Neuroblastoma Cells Against Hypoxia/Re-oxygenation Through Up-Regulating HSP70 and Activating PI3K/AKT Signaling Pathway.

BAG-1L Protects SH-SY5Y Neuroblastoma Cells Against Hypoxia/Re-oxygenation Through Up-Regulating HSP70 and Activating PI3K/AKT Signaling Pathway. Neurochem Res. 2017 May 18;: Authors: Wang Y, Jia C, Li QS, Xie CY, Zhang N, Qu Y Abstract BCL-2-associated athanogene-1(BAG-1) is a multifunctional and anti-apoptotic protein that was first identified as a binding partner of BCL-2. But the effects and mechanisms for BAG-1 against hypoxic damage is unclear up to now. Whether BAG-1 could protect the human brain against hypoxic damage through up-regulating 70 kDa heat shock proteins (HSP70) and PI3K/AKT pathway activation? In present study, we examined the changes of HSP70 and AKT and p-AKT protein level in SH-SY5Y cells with BAG-1L gene over-expression subjected to hypoxia/re-oxygenation injury. BAG-1L over-expression increased neuronal viability, and it reduced apoptosis of neurons after hypoxia/re-oxygenation for 8 h. BAG-1L over-expression enhanced the HSP70 protein levels and increased p-AKT/total AKT ratio after hypoxia/re-oxygenation for 8 h. These results suggest that BAG-1L over-expression protects against hypoxia/re-oxygenation injury, at least in part, by interacting with HSP70, and by accelerating the activation of PI3K/AKT pathways. PMID: 28523530 [PubMed - as supplied by publisher]
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research