Anti-inflammatory effects of novel polygonum multiflorum compound via inhibiting NF- κB/MAPK and upregulating the Nrf2 pathways in LPS-stimulated microglia

Publication date: 9 June 2017 Source:Neuroscience Letters, Volume 651 Author(s): Sun Young Park, Mei Ling Jin, Nam Jun Kang, Geuntae Park, Young-Whan Choi The incorporation of Polygonum multiflorum into the diet can result in anti-aging effects owing to its wide range of biological and pharmaceutical properties. We investigated the anti-neuroinflammatory properties of CRPE56IGIH isolated from P. multiflorum by focusing on its role in the induction of phase II antioxidant enzymes and the modulation of upstream signaling pathways. In microglia, CRPE56IGIH significantly inhibited lipopolysaccharide (LPS)-stimulated nitric oxide and prostaglandin E2 production with nonspecific cytotoxicity. CRPE56IGIH also markedly inhibited LPS-inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 protein and mRNA expression in the same manner as it inhibited nitric oxide and prostaglandin E2 production. In the control cells, NF-κB transactivation and nuclear translocation occurred at a baseline level, which was significantly increased in response to LPS. However, pretreatment with CRPE56IGIH concentration-dependently inhibited the LPS-induced NF-κB transactivation and nuclear translocation. The phosphorylation of Janus kinase-signal transducers and activators of transcription and mitogen-activated protein kinases was markedly upregulated by LPS, but considerably and dose-dependently inhibited by pretreatment with CRPE56IGIH. Furthermore, CRPE56IGIH induced the expression of phase...
Source: Neuroscience Letters - Category: Neuroscience Source Type: research