Abstract B47: Silver nanoparticles exhibit subtype specific cytotoxic and therapeutic effects in claudin low breast cancer in vitro and in vivo

Triple negative breast cancers (TNBC) are characterized by loss of expression of hormone receptors and decreased expression of the human epidermal growth factor receptor 2 (HER2). TNBC patients do not benefit from current targeted breast cancer (BC) treatments. Molecular profiling of breast cancer has found that TNBC is largely comprised of basal-like and claudin-low intrinsic molecular subtypes. Claudin-low breast cancer (CLBC) accounts for approximately one third of TNBCs, and early evidence suggests CLBC tumors may be more resistant to neoadjuvant anthracycline/taxane-based chemotherapy compared to basal-like tumors. For the development of novel breast cancer therapeutics, attention must be paid to therapeutic efficacy in specific sub-types of the disease. We discovered a type of silver nanoparticle (AgNP) that is selectively cytotoxic for treatment of CLBC. We find that the increased sensitivity of CLBC cells as compared to non-cancerous cells was independent of nanoparticle size, and CLBC cell lines (MDA-MB-231, BT-549, SUM-159) are more sensitive to AgNP exposure than luminal A BC (MCF-7), HER2 positive BC (SKBR3), and basal-like BC (MDA-MB-468, BT-20), or non-cancerous breast cells (MCF-10A, 184B5, HMT-3522 S1) via MTT assay. By treating CLBC cells and non-cancer breast cells with AgNPs or silver ions, in the form of silver nitrate, we demonstrated that intact AgNPs are necessary for selective cytotoxicity in CLBC. To determine the mechanism of cell death caused by AgN...
Source: Cancer Research - Category: Cancer & Oncology Authors: Tags: Drug Delivery and Nanomedicine Source Type: research