Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia.

This study examined the effects of melatonin on manganese (Mn) and/or lipopolysaccharide (LPS)-induced microglial activation. Melatonin (10 μM) inhibited Mn (100 μM) and/or LPS (0.5 μg/ml)-induced phagocytotic activity of activated BV2 microglia. It also inhibited the lipid peroxidation and intracellular reduced glutathione (GSH) depletion induced by Mn and/or LPS. Melatonin effectively suppressed the upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in Mn and/or LPS-stimulated BV2 microglia. In addition, melatonin pretreatment attenuated Mn and/or LPS-induced degradation of IκB-α, nuclear translocation of nuclear factor-κB (NF-κB) and its activation, and the expressions of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in BV2 microglial cells. These results suggest that melatonin can effectively modulate phagocytosis and expression of proinflammatory mediators, and can prevent neuroinflammatory disorders accompanied by microglial activation. PMID: 27900599 [PubMed - as supplied by publisher]
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research