Disease-Toxicant Interactions in Parkinson's Disease Neuropathology.

Disease-Toxicant Interactions in Parkinson's Disease Neuropathology. Neurochem Res. 2016 Sep 9; Authors: Kwakye GF, McMinimy RA, Aschner M Abstract Human disease commonly manifests as a result of complex genetic and environmental interactions. In the case of neurodegenerative diseases, such as Parkinson's disease (PD), understanding how environmental exposures collude with genetic polymorphisms in the central nervous system to cause dysfunction is critical in order to develop better treatment strategies, therapies, and a more cohesive paradigm for future research. The intersection of genetics and the environment in disease etiology is particularly relevant in the context of their shared pathophysiological mechanisms. This review offers an integrated view of disease-toxicant interactions in PD. Particular attention is dedicated to how mutations in the genes SNCA, parkin, leucine-rich repeat kinase 2 (LRRK2) and DJ-1, as well as dysfunction of the ubiquitin proteasome system, may contribute to PD and how exposure to heavy metals, pesticides and illicit drugs may further the consequences of these mutations to exacerbate PD and PD-like disorders. Although the toxic effects induced by exposure to these environmental factors may not be the primary causes of PD, their mechanisms of action are critical for our current understanding of the neuropathologies driving PD. Elucidating how environment and genetics collude to cause pathogenesis of P...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research