A Method to Correct Eddy Covariance Flux Underestimates under an Advective Environment for Arid or Semi-arid Regions

In this study, a new method is proposed to account for advection in order to correct EC data under advective environments. This advection based method was applied to data from Bushland, TX, which is subject to dry air and strong winds. Observations from two identical EC systems as well as two precision monolithic weighing lysimeters were used in this analysis. Both EC sites showed significant underestimates of evapotranspiration (ET) compared with lysimeter measurements. The daily energy balance closure for NE01 and SE02 sites were 0.78 and 0.74 respectively. The advection correction method provided improved performance in daytime, and it is more suitable for ET estimate than forcing closure under the advective environment. For nighttime, two methods (NCM1 and NCM2) were proposed to correct EC underestimates. Finally, all the corrected ET values were compared with the lysimeter measurements. For NE01 site, the MAD (mean absolute deviation) and the RMSD (root mean square deviation) were 47.72 W/m2 and 67.66 W/m2, respectively; and the r2 (coefficient of determination) was 0.85. For SE02 site, the MAD and RMSD were 30.59 W/m2 and 44.43 W/m2; and the r2 was 0.93. The statistical measures illustrated that the proposed methods are functional and appropriate under an advective environment. The accurate estimate of actual evapotranspiration will benefit both the strategic planning of optimal water uses and the improved understanding the environmental and hydrological processes.
Source: Physics and Chemistry of the Earth, Parts ABC - Category: Science Source Type: research