Study of Supplementary Analgesics Capable of Reducing the Dosage of Morphine.

This article reviews the potential mechanism of spinally mediated nociceptive behaviors evoked by i.t. M3G in mice. We discuss the possible presynaptic release of nociceptive neurotransmitters/neuromodulators such as substance P, glutamate, dynorphin, and Leu-enkephalin in the primary afferent fibers following i.t. M3G administration. It is possible to speculate that i.t. M3G could indirectly activate NK1, NMDA, and δ2-opioid receptors that lead to the release of nitric oxide (NO) in the dorsal spinal cord. The major function of NO is the production of cGMP and the activation of protein kinase G (PKG). The NO-cGMP-PKG pathway plays an important role in M3G-induced nociceptive behavior. The phosphorylation of extracellular signal-related kinase (ERK) in the dorsal spinal cord was also evoked via the NO-cGMP-PKG pathway through the activation of δ2-opioid, NK1, and NMDA receptors, contributing to M3G-induced nociceptive behaviors. The demonstration of a neural mechanism underlying M3G-induced nociception provides a pharmacological basis for improved pain management with morphine at high doses. PMID: 26831810 [PubMed - in process]
Source: Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan - Category: Drugs & Pharmacology Authors: Tags: Yakugaku Zasshi Source Type: research