Chronic Metformin Preconditioning Provides Neuroprotection via Suppression of NF-κB-Mediated Inflammatory Pathway in Rats with Permanent Cerebral Ischemia

In this study, we tested the hypothesis that chronic preconditioning with metformin conferred neuroprotection via suppression of nuclear factor kappa B (NF-κB)-mediated inflammatory pathway. Male Sprague–Dawley rats were treated with vehicle or metformin (50 mg/kg daily, i.p.) for 3 weeks and were subjected to permanent middle cerebral artery occlusion (pMCAO). At 24 h (acute phase) and 96 h (subacute phase) after pMCAO, infarct volume and neurological deficits were evaluated. Meanwhile, the activity of NF-κB and the levels of its downstream pro-inflammatory cytokines were detected at 24 h after pMCAO. Our results showed that chronic metformin preconditioning significantly reduced infarct volume and improved neurological deficits at 24 and 96 h after pMCAO. It also suppressed brain NF-κB activity, which was accompanied by a reduction of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and induced nitric oxide synthase in the peri-infarct regions at 24 h after pMCAO. Moreover, the microgliosis and astrocytosis induced by pMCAO were also ameliorated by chronic metformin preconditioning. Collectively, the present study provides the first evidence that suppression of NF-κB-mediated inflammatory pathway may represent one potential mechanism underlying the neuroprotection of chronic metformin preconditioning. In addition, our findings suggest that metformin, a first-line drug for glycemic control, has a practical clinical use f...
Source: Molecular Neurobiology - Category: Neurology Source Type: research