Expression of human dCTP pyrophosphatase 1 (DCTPP1) and its association with cisplatin resistance characteristics in ovarian cancer

In this study, we aimed to understand the role of DCTPP1 in cancer progression and cisplatin response. Using publicly available databases, we analysed the expression and clinical significance of DCTPP1 in ovarian cancer. Our bioinformatics analysis confirmed that DCTPP1 is significantly overexpressed in ovarian cancer and is closely associated with tumour progression and poor prognosis after cisplatin treatment. We also found that DCTPP1 located in oxidoreductase complex and may be involved in various biological processes related to cisplatin resistance, including pyrimidine nucleotide metabolism, the P53 signalling pathway and cell cycle signalling pathways. We observed higher expression of DCTPP1 in cisplatin-resistant cells (SKOV3/DDP) and samples compared to their sensitive counterparts. Additionally, we found that DCTPP1 expression was only enhanced in SKOV3/S cells when treated with cisplatin, indicating different expression patterns of DCTPP1 in cisplatin-sensitive and cisplatin-resistant cancer cells. Our study further supports the notion that cisplatin induces intracellular reactive oxygen species (ROS) and triggers cancer cell death through excessive oxidative stress. Knocking out DCTPP1 reversed the drug resistance of ovarian cancer cells by enhancing the intracellular antioxidant stress response and accumulating ROS. Based on our research findings, we conclude that DCTPP1 has prognostic value for ovarian cancer patients, and targeting DCTPP1 may be clinically sign...
Source: Molecular Medicine - Category: Molecular Biology Authors: Source Type: research