S. aureus biofilm properties correlate with immune B cell subset frequencies and severity of chronic rhinosinusitis

This study aimed to investigate whether strain-level variation in in vitro-grown S. aureus biofilm properties relates to CRS disease severity, in vitro toxicity, and immune B cell responses in sinonasal tissue from CRS patients and non-CRS controls. S. aureus clinical isolates, tissue samples, and matched clinical datasets were collected from CRS patients with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. B cell responses in tissue samples were characterised by FACS. S. aureus biofilms were established in vitro, followed by measuring their properties of metabolic activity, biomass, colony-forming units, and exoprotein production. S. aureus virulence was evaluated using whole-genome sequencing, mass spectrometry and application of S. aureus biofilm exoproteins to air-liquid interface cultures of primary human nasal epithelial cells (HNEC-ALI). In vitro S. aureus biofilm properties were correlated with increased CRS severity scores, infiltration of antibody-secreting cells and loss of regulatory B cells in tissue samples. Biofilm exoproteins from S. aureus with high biofilm metabolic activity had enriched virulence genes and proteins, and negatively affected the barrier function of HNEC-ALI cultures. These findings support the notion of strain-level variation in S. aureus biofilms to be critical in the pathophysiology of CRS.PMID:38636891 | DOI:10.1016/j.clim.2024.110221
Source: Clinical Immunology - Category: Allergy & Immunology Authors: Source Type: research