Dynamic cerebral autoregulation is governed by two time constants: Arterial transit time and feedback time constant

In this study, the processes that govern dCA are examined and it is proposed that the application of biophysical models remains limited due to a lack of understanding about the physical processes that are being modelled, partly due to the specific model formulation that has been most widely used (the equivalent electrical circuit). Based on the analysis presented here, it is proposed that the two most important time constants are arterial transit time and feedback time constant. It is therefore time to revisit equivalent electrical circuit models of dCA and to develop a more physiologically realistic alternative, one that can more easily be related to experimental data. KEY POINTS: Dynamic cerebral autoregulation is governed by two time constants. The first time constant is the arterial transit time, rather than the traditional 'RC' time constant widely used in previous models. This arterial transit time is approximately 1 s in the brain. The second time constant is the feedback time constant, which is less accurately known, although it is somewhat larger than the arterial transit time. The equivalent electrical circuit model of dynamic cerebral autoregulation should be replaced with a more physiologically representative model.PMID:38630963 | DOI:10.1113/JP285679
Source: The Journal of Physiology - Category: Physiology Authors: Source Type: research