Alterations of Whole-Body Glucose Metabolism in a Feline SARS-CoV-2 Infection Model

Am J Physiol Regul Integr Comp Physiol. 2024 Apr 4. doi: 10.1152/ajpregu.00228.2023. Online ahead of print.ABSTRACTSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been especially devastating to patients with comorbidities, including metabolic and cardiovascular diseases. Elevated blood glucose during SARS-CoV-2 infection increased mortality of COVID-19 patients, although the mechanisms are not well understood. It has been previously demonstrated that glucose transport and utilization is a crucial pathway for other highly infectious RNA viruses. Thus, we hypothesized that SARS-CoV-2 infection could lead to alterations in cellular and whole-body glucose metabolism. Specific pathogen free domestic cats were intratracheally inoculated with USA-WA1/2020 (Wild-type) SARS-CoV-2 or vehicle-inoculated, then sacrificed at 4- and 8-days post-inoculation (dpi). Blood glucose and cortisol concentrations were elevated at 4 and 8 dpi. Blood ketones, insulin, and angiotensin 2 concentrations remained unchanged throughout the experimental timeline. SARS-CoV-2 RNA was detected in the lung and heart, without changes in angiotensin converting enzyme 2 (ACE2) RNA expression. In the lung, SARS-CoV-2 infection increased glucose transporter 1 (GLUT1) protein level at 4 and 8 dpi., while GLUT4 level was only upregulated at 8 dpi. In the heart, GLUT-1 and -4 protein levels remained unchanged. Furthermore, GLUT1 level was upregulated in the skeletal muscle at 8 dpi, and AMPK was activa...
Source: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology - Category: Physiology Authors: Source Type: research