Assessment of Kinome-wide Activity Remodeling Upon Picornavirus Infection

Mol Cell Proteomics. 2024 Mar 29:100757. doi: 10.1016/j.mcpro.2024.100757. Online ahead of print.ABSTRACTPicornaviridae represent a large family of single-stranded positive RNA viruses of which different members can infect both humans and animals. These include the enteroviruses (e.g., poliovirus, coxsackievirus, and rhinoviruses) as well as the cardioviruses (e.g., encephalomyocarditis virus (EMCV)). Picornaviruses have evolved to interact with, use, and/or evade cellular host systems to create the optimal environment for replication and spreading. It is known that viruses modify kinase activity during infection, but a proteome-wide overview of the (de)regulation of cellular kinases during picornavirus infection is lacking. To study the kinase activity landscape during picornavirus infection, we here applied dedicated targeted mass spectrometry-based assays covering ∼40% of the human kinome. Our data show that upon infection, kinases of the MAPK pathways become activated (e.g., ERK1/2, RSK1/2, JNK1/2/3, p38), while kinases involved in regulating the cell cycle (e.g., CDK1/2, GWL, DYRK3) become inactivated. Additionally, we observed the activation of CHK2, an important kinase involved in the DNA damage response. Using pharmacological kinase inhibitors, we demonstrate that several of these activated kinases are essential for the replication of EMCV. Altogether, the data provide a quantitative understanding of the regulation of kinome activity induced by picornavirus infectio...
Source: Molecular and Cellular Proteomics : MCP - Category: Molecular Biology Authors: Source Type: research