Fosl2 Deficiency Predisposes Mice to Osteopetrosis, Leading to Bone Marrow Failure

In this study, we show that Fosl2 maintains hematopoietic stem cell (HSC) quiescence and differentiation while controlling the inflammatory response via macrophages. Fosl2-specific deletion in the hematopoietic system caused the expansion of HSCs and myeloid cell growth while affecting erythroid and B cell differentiation. Fosl2 inactivation enhanced macrophage M1 polarization and stimulated proinflammatory cytokines and myeloid growth factors, skewing HSCs toward myeloid cell differentiation, similar to hematopoietic alterations in arthritic mice. Loss of Fosl2 mediated by Vav-iCre also displays an unexpected deletion in embryonic erythro-myeloid progenitor-derived osteoclasts, leading to osteopetrosis and anemia. The reduced bone marrow cellularity in Vav-iCreFosl2f/f mice is a consequence of the reduced bone marrow space in osteopetrotic mice rather than a direct role of Fosl2 in hematopoiesis. Thus, Fosl2 is indispensable for erythro-myeloid progenitor-derived osteoclasts to maintain the medullary cavity to ensure normal hematopoiesis. These findings improve our understanding of the pathogenesis of bone-destructive diseases and provide important implications for developing therapeutic approaches for these diseases.PMID:38380993 | DOI:10.4049/jimmunol.2300592
Source: Journal of Immunology - Category: Allergy & Immunology Authors: Source Type: research