Integrated physiological and transcriptomic analyzes reveal the duality of TiO < sub > 2 < /sub > nanoparticles on alfalfa (Medicago sativa L.)

Ecotoxicol Environ Saf. 2024 Feb 1;272:116059. doi: 10.1016/j.ecoenv.2024.116059. Online ahead of print.ABSTRACTAlfalfa (Medicago sativa L.) is a feed crop due to its rich nutrition and high productivity. The utilization of titanium oxide nanoparticles (TiO2 NPs) brings benefits to agricultural production but also has potential hazards. To investigate the duality and related mechanism of TiO2 NPs on alfalfa, its different doses including 0, 50, 100, 200, 500, and 1000 mg L- 1 (CK, Ti-50, Ti-100, Ti-200, Ti-500, and Ti-1000) were sprayed on leaves. The results showed that greater doses of TiO2 NPs (500 and 1000 mg L-1) negatively affected the physiological parameters, including morphology, biomass, leaf ultrastructure, stomata, photosynthesis, pigments, and antioxidant ability. However, 100 mg L-1 TiO2 NPs revealed an optimal positive effect; compared with the CK, it dramatically increased plant height, fresh weight, and dry weight by 22%, 21%, and 41%, respectively. Additionally, TiO2 NPs at low doses significantly protected leaf tissue, promoted stomatal opening, and enhanced the antioxidant system; while higher doses had phytotoxicity. Hence, TiO2 NPs are dose-dependent on alfalfa. The transcriptomic analysis identified 4625 and 2121 differentially expressed genes (DEGs) in the comparison of CK vs. Ti-100 and CK vs. Ti-500, respectively. They were mainly enriched in photosynthesis, chlorophyll metabolism, and energy metabolism. Notably, TiO2 NPs-induced phytotoxicity on pho...
Source: Ecotoxicology and Environmental Safety - Category: Environmental Health Authors: Source Type: research