Short life fission products extracted from molten salt reactor fuel for radiopharmaceutical applications

Appl Radiat Isot. 2023 Dec 13;205:111146. doi: 10.1016/j.apradiso.2023.111146. Online ahead of print.ABSTRACTThis work studies the potential of using short life fission product (AFp) radioisotopes e.g. 82Br, 86Rb, (90Sr) - 90mY, (99Mo) - 99mTc, 103Ru - 103mRh, 111Ag, 127Sb - 127(m)Te, 126I, 131I, 133Xe, 136Cs, 141Ce, 143Ce, 143Pr, 147Nd - 147Pm, 149Pm, 153Sm, 156Eu, 159Gd and 161Tb, extracted from a molten salt reactor and their separation using specific thermodynamic and radiochemical conditions. Their utilisation for coupled radiodiagnostics and radiotherapy is a key consideration. A molten salt reactor produces fission products during operation. These radioisotopes can be separated at line from the liquid fuel by evaporation/distillation, chemical reduction (using H2 doped gas), electro-deposition and/or chemical oxidation (using Cl2 doped gas). They can be refined and chemically treated for radiopharmaceutical use for imaging and radiodiagnostics utilising γ radioscopy or positron emission tomography, and potentially in radiotherapy to target specific cancers or viral diseases using β- emitters. Some of the AFp isotopes are currently used for radiodiagnostics because they emit γ rays of energy 50-200 keV. However, some may also be used in parallel for radiotherapy utilising their β- (EMean ≈ 100 keV) emission whose mean free pathway of c.a. 100 nm in biological tissue is much smaller than their penetration depth. Focus is given to 86Rb, 90Y, 99mTc, 131I and 133Xe as...
Source: Applied Radiation and Isotopes - Category: Radiology Authors: Source Type: research