Mechanisms of microbial resistance against cadmium – a review

AbstractThe escalating cadmium influx from industrial activities and anthropogenic sources has raised serious environmental concerns due to its toxic effects on ecosystems and human health. This review delves into the intricate mechanisms underlying microbial resistance to cadmium, shedding light on the multifaceted interplay between microorganisms and this hazardous heavy metal. Cadmium overexposure elicits severe health repercussions, including renal carcinoma, mucous membrane degradation, bone density loss, and kidney stone formation in humans. Moreover, its deleterious impact extends to animal and plant metabolism. While physico-chemical methods like reverse osmosis and ion exchange are employed to mitigate cadmium contamination, their costliness and incomplete efficacy necessitate alternative strategies. Microbes, particularly bacteria and fungi, exhibit remarkable resilience to elevated cadmium concentrations through intricate resistance mechanisms. This paper elucidates the ingenious strategies employed by these microorganisms to combat cadmium stress, encompassing metal ion sequestration, efflux pumps, and enzymatic detoxification pathways. Bioremediation emerges as a promising avenue for tackling cadmium pollution, leveraging microorganisms' ability to transform toxic cadmium forms into less hazardous derivatives. Unlike conventional methods, bioremediation offers a cost-effective, environmentally benign, and efficient approach. This review amalgamates the current un...
Source: Journal of Environmental Health Science and Engineering - Category: Environmental Health Source Type: research