Manipulating gene expression levels in mammalian cell factories: an outline of synthetic molecular toolboxes to achieve multiplexed control

N Biotechnol. 2023 Nov 29:S1871-6784(23)00066-3. doi: 10.1016/j.nbt.2023.11.003. Online ahead of print.ABSTRACTCells, both of prokaryotic and eukaryotic origin, have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell phenotype. Modulating cellular phenotypes is of major interest, either to study their role in disease or to reprogram cells for the manufacture of recombinant products, such as biopharmaceuticals. For the latter, cells of mammalian origin, such as Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Altering their phenotype is often achieved randomly by subcloning and selection of appropriate behavior or by genetic engineering. In both cases, the objective is to obtain expression systems that generate the desired product with the highest possible quality and quantity. Early genetic engineering approaches have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, have highlighted that a controlled manipulation of transgene expression, by rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much greater precision than such "uncontrolled" approaches. To control and (fine-)tune the ex...
Source: New Biotechnology - Category: Biotechnology Authors: Source Type: research