Changes in vestibular-related responses to combined noisy galvanic vestibular stimulation and cerebellar transcranial direct current stimulation

This study aimed to examine whether the combination of noisy galvanic vestibular stimulation (nGVS) and cerebellar transcranial direct current stimulation (ctDCS) using a complex transcranial electrical stimulation device alters vestibular-dominant standing stability and vestibulo-ocular reflex (VOR) function. The center of foot pressure (COP) sway and VOR of participants (28 healthy, young adults) were assessed under four conditions of transcranial electrical stimulation using nGVS and ctDCS. The COP was calculated with the participant standing on a soft-foam surface with eyes closed using a force plate to evaluate body sway. VOR measurements were collected via passive head movements and fixation on a target projected onto the front wall using a video head impulse test (vHIT). VOR gain was calculated in six directions using a semicircular canal structure based on the ratio of eye movement to head movement. The nGVS + ctDCS and nGVS + sham ctDCS conditions decreased COP sway compared to the sham nGVS + ctDCS and sham nGVS + sham ctDCS conditions. No significant differences were observed in the main effect of stimulation or the interaction of stimulation and direction on the vHIT parameters. The results of this study suggest that postural stability may be independently affected by nGVS. Our findings contribute to the basic neurological foundation for the clinical application of neurorehabilitation using transcranial electrical stimulation of the vestibular system.PMID:37966504...
Source: Experimental Brain Research - Category: Neuroscience Authors: Source Type: research