Mechanistic of Vesicular Ethosomes and Elastic Liposomes on Permeation Profiles of Acyclovir across Artificial Membrane, Human Cultured EpiDerm, and Rat Skin: In Vitro-Ex Vivo Study

Pharmaceutics. 2023 Aug 24;15(9):2189. doi: 10.3390/pharmaceutics15092189.ABSTRACTAcyclovir (ACV) controls cutaneous herpes, genital herpes, herpes keratitis, varicella zoster, and chickenpox. From previously reported ACV formulations, we continued to explore the permeation behavior of the optimized ACV loaded optimized ethosome (ETHO2R) and elastic liposome (ELP3R) and their respective carbopol gels across artificial membrane, cultured human EpiDerm, and rat skin. Transepidermal water loss (TEWL), scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and atomic force microscopy (AFM) were used to investigate the mechanistic perspective of permeation behavior. The size values of reformulated ELP3-R and ETHO2-R were observed as 217 and 128 nm, respectively (close to previous report), whereas their respective gels showed as 231 and 252 nm, respectively. ETHO2R showed high elasticity, %EE, and low vesicle size. These were investigated for the diffusion rate of the drug permeation (3 h) across the artificial membrane, cultured human EpiDerm, and rat skin. ETHO2GR showed the highest permeation flux (78.42 µg/cm2/h), diffusion coefficient (8.24 × 10-5 cm2/h), and permeation coefficient (0.67 × 10-3 cm/h) of ACV across synthetic membrane, whereas diffusion coefficient (2.4 × 10-4 cm2/h) and permeation coefficient (0.8 × 10-3 cm/h) were maximum across EpiDerm for ETHO2GR. ETHO2R suspension showed maximized permeation flux (169.58 µg/cm2/h) and diffusion...
Source: Herpes - Category: Infectious Diseases Authors: Source Type: research