Roles of Neuroglobin Binding to Mitochondrial Complex III Subunit Cytochrome c 1 in Oxygen-Glucose Deprivation-Induced Neurotoxicity in Primary Neurons

In this study, we for the first time defined Ngb-Cyc1 binding, and investigated its roles in oxygen-glucose deprivation (OGD)/reoxygenation-induced neurotoxicity and ROS production in primary neurons. Immunocytochemistry and co-immunoprecipitation validated Ngb-Cyc1 binding, which was significantly increased by OGD and Ngb overexpression. We found 4 h OGD with/without 4 h reoxygenation significantly increased complex III activity, but this activity elevation was significantly attenuated in three groups of neurons: Ngb overexpression, specific complex III inhibitor stigmatellin, or stigmatellin plus Ngb overexpression, whereas there was no significant differences between these three groups, suggesting Ngb-Cyc1 binding may function in suppressing OGD-mediated complex III activity elevation. Importantly, these three groups of neurons also showed significant decreases in OGD-induced superoxide anion generation and neurotoxicity. These results suggest that Ngb can bind to mitochondrial complex III subunit Cyc1, leading to suppression of OGD-mediated complex III activity and subsequent ROS production elevation, and eventually reduction of OGD-induced neurotoxicity. This molecular signaling cascade may be at least part of the mechanisms of Ngb neuroprotection against OGD-induced neurotoxicity.
Source: Molecular Neurobiology - Category: Neurology Source Type: research