Removal of an agricultural herbicide (2,4-Dichlorophenoxyacetic acid) using magnetic nanocomposite: A combined experimental and modeling studies

This study focused on modeling the removal of one of the widely used agricultural herbicides known as 2,4-Dichlorophenoxyacetic acid (2,4-D) using polypyrrole-coated Fe2O3 nanoparticles (Fe2O3@PPy). The Fe2O3@PPy nanocomposite was synthesized by surface-coating the Tabebuia aurea leaf extract synthesized Fe2O3 nanoparticles with polypyrrole. After characterization, the adsorptive potential of the nanocomposite for removing 2,4-D from aqueous solution was examined. Central composite design (CCD) was employed for optimizing the adsorption, revealing an adsorption efficiency of 90.65% at a 2,4-D concentration of 12 ppm, a dosage of 3.8 g/L, an agitation speed of 150 rpm, and 196 min. Adsorption dataset fitted satisfactorily to Langmuir isotherm (R2: 0.984 & χ2: 0.054) and pseudo-second-order kinetics (R2: 0.929 & χ2: 0.013) whereas the exothermic and spontaneous nature were confirmed via the thermodynamic study. The predictive models, including adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), and response surface methodology (RSM), demonstrated good precision for the prediction of 2,4-D adsorption, with respective R2 of 0.9719, 0.9604, and 0.9528. Nevertheless, statistical analysis supported ANFIS as the better forecasting tool, while RSM was the least effective. The maximum adsorption capacity of 2,4-D onto the Fe2O3@PPy nanocomposite was 7.29 mg/g, significantly higher than a few reported values. Therefore, the Fe2O3@PPy nanocomposite c...
Source: Environmental Research - Category: Environmental Health Authors: Source Type: research