Asymmetric connections with starburst amacrine cells underlie the upward motion selectivity of J-type retinal ganglion cells

by Bo Wang, Yifeng Zhang Motion is an important aspect of visual information. The directions of visual motion are encoded in the retina by direction-selective ganglion cells (DSGCs). ON-OFF DSGCs and ON DSGCs co-stratify with starburst amacrine cells (SACs) in the inner plexiform layer and depend on SACs for their direction selectivity. J-type retinal ganglion cells (J-RGCs), a type of OFF DSGCs in the mouse retina, on the other hand, do not co-stratify with SACs, and how direction selectivity in J-RGCs emerges has not been understood. Here, we report that both the excitatory and inhibitory synaptic inputs to J-RGCs are direction-selective (DS), with the inhibitory inputs playing a more important role for direction selectivity. The DS inhibitory inputs come from SACs, and the functional connections between J-RGCs and SACs are spatially asymmetric. Thus, J-RGCs and SACs form functionally important synaptic contacts even though their dendritic arbors show little overlap. These findings underscore the need to look beyond the neurons ’ stratification patterns in retinal circuit studies. Our results also highlight the critical role of SACs for retinal direction selectivity.
Source: PLoS Biology: Archived Table of Contents - Category: Biology Authors: Source Type: research