SALL4 advances the proliferation and tumor cell stemness of colon cancer cells through the transcription and regulation of ROBO2

Nucleosides Nucleotides Nucleic Acids. 2023 Sep 3:1-15. doi: 10.1080/15257770.2023.2253279. Online ahead of print.ABSTRACTSALL4 is a transcription factor highly expressed in diverse cancers and is implicated in the development of cancer. SALL4 has been implied to play a cancer-promoting role in colon cancer (CC), but the molecular mechanism remains unclear. Chromatin immunoprecipitation assay and dual-luciferase assay were conducted to verify the binding relationship of SALL4 and ROBO2. qRT-PCR detected the mRNA expression levels of SALL4 and ROBO2, and the flow cytometry analyzed the cell cycle distribution. Western blot examined SALL4 expression, and cell cycle/cell stemness-related proteins. The impact of SALL4 and ROBO2 on the proliferation capacity of cells and tumor cell stemness was elucidated by MTT, colony formation, and sphere-forming assays. SALL4 and ROBO2 were up-regulated in CC, and SALL4 could activate the transcription of ROBO2. Down-regulated SALL4 was able to significantly restrain the proliferation capacity of CC cells and arrest the cell cycle in G0/G1 phase by repressing the expression of cyclin B, cyclin E, and cyclin D1. Besides, the rescue assay results indicated that up-regulated ROBO2 could reverse the repressive impact of down-regulated SALL4 on the proliferation of CC cells and accelerate the progression of the cell cycle, thus promoting the sphere-forming of tumor stem cells. SALL4 advanced the proliferation of CC and cell stemness through direct ...
Source: Nucleosides, Nucleotides and Nucleic Acids - Category: Biochemistry Authors: Source Type: research