Tanshinone IIA protects mouse testes from heat stress injury by inhibiting apoptosis and TGF β1/Smad2/Smad3 signaling pathway

This study aims to construct a mouse testicular heat stress injury model and intervene with TSA. Various methods such as histopathology, high-throughput sequencing, bioinformatics analysis, and molecular biology were used to investigate whether TSA can alleviate heat stress-induced testicular injury and its mechanism. Results showed that heat stress significantly reduced the diameter of the mouse seminiferous tubules, increased cell apoptosis in the testicular tissue, and significantly decreased testosterone levels. After TSA intervention, testicular morphology and cell apoptosis improved significantly, and testosterone secretion function was restored. High-throughput transcriptome sequencing found that key differentially expressed genes between the HS group and the control and TSA groups clustered in the apoptosis and TGFβ signaling pathways. Using western blot technology, we found that the HS group upregulated TGFβ1/Smad2/Smad3 pathway protein expression, causing cell apoptosis, testicular tissue organic lesions, and affecting testicular secretion function. Through TSA intervention, we found that it can inhibit TGFβ1/Smad2/Smad3 pathway protein expression, thereby restoring testicular damage caused by heat stress. This study confirms that TSA can effectively restore testicular damage caused by heat stress in mice, possibly by inhibiting the TGFβ1/Smad2/Smad3 pathway to suppress apoptosis.PMID:37610501 | DOI:10.1007/s12192-023-01367-4
Source: Cell Stress and Chaperones - Category: Cytology Authors: Source Type: research