A Universal Epigenetic Aging Clock for All Mammalian Species

Epigenetic modifications to the nuclear genome, such as the addition of methyl groups to CpG sites, known as DNA methylation, adjust the structure of double-stranded DNA. That structure determines which gene sequences are accessible to transcription machinery, the first step in producing proteins. Thus epigenetics drives gene expression, and gene expression drives the behavior of cells. It is a feedback loop between environment, cell behavior, and epigenetics. The pattern of epigenetic modifications changes constantly in response to circumstances, but some changes are characteristic of aging. When discovered, this led to the construction of the first epigenetic clocks to measure chronological age and then biological age. More than a decade later, epigenetic clocks are still very much a work in progress, in the sense that it is not well understood as to how the fundamental mechanisms of aging connect to the methylation of specific CpG sites on the genome. It is presently impossible to say whether any given clock (epigenetic or otherwise) will accurately reflect the effects of a given intervention on future life span and risk of age-related disease. Clocks have also been tissue and species specific, at least until now. Researchers have now mined data from many different species in order to produce a cross-species clock that can be applied to all mammals. Looking past that advance, it is perhaps more interesting to note that the researchers examining DNA methylatio...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs