Simvastatin prevents BMP-2 driven cell migration and invasion by suppressing oncogenic DNMT1 expression in breast cancer cells

This study emphasized to decipher the molecular mechanism of endogenous regulation of DNMT1 expression for finding upstream signaling molecules. Cancer database analyses found an upregulated DNMT1 expression in most cancer types including breast cancer. Overexpression of DNMT1 showed an increased cell migration, invasion, and stemness potential whereas 5-azacytidine (DNMT1 inhibitor) and siRNA mediated knockdown of DNMT1 exhibited inhibition of such cancer activities in breast cancer MDA-MB-231 and MCF-7 cells. Infact, cancer database analyses further found a positive correlation of DNMT1 transcript with both cholesterol pathway regulatory genes and BMP signaling molecules. Experimental observations documented that the cholesterol-lowering drug, simvastatin decreased DNMT1 transcript as well as protein, whereas BMP-2 treatment increased DNMT1 expression in breast cancer cells. In addition, expression of various key cholesterol regulatory genes was found to be upregulated in response to BMP-2 treatment. Moreover, simvastatin inhibited BMP-2 induced DNMT1 expression in breast cancer cells. Thus, this study for the first time reveals that both BMP-2 signaling and cholesterol pathways could regulate endogenous DNMT1 expression in cancer cells.PMID:37442305 | DOI:10.1016/j.gene.2023.147636
Source: Gene - Category: Genetics & Stem Cells Authors: Source Type: research