Long non-coding RNA HOXA11-AS regulates ischemic neuronal death by targeting miR-337-3p/YBX1 signaling pathway: protective effect of dexmedetomidine

This study aimed to explore the possible link between Dex and HOXA11-AS in protecting neuronal cells from by ischemia/reperfusion-induced apoptosis. We used oxygen-glucose deprivation and reoxygenation (OGD/R) in mouse neuroblastoma Neuro-2a cells and middle cerebral artery occlusion (MACO) mouse model to test the link. We found that Dex significantly alleviated OGD/R-induced DNA fragmentation, cell viability and apoptosis, and rescued the decreased HOXA11-AS expression after ischemic damage in Neuro-2a cells. Gain-/loss-of-function studies revealed that HOXA11-AS promoted proliferation, inhibited apoptosis in Neuro-2a cells exposed to OGD/R. Knockdown of HOXA11-AS decreased the protective effect of Dex on OGD/R cells. HOXA11-AS was found to transcriptionally regulate microRNA-337-3p (miR-337-3p) expression as evidenced by luciferase reporter assay, while miR-337-3p expression was upregulated following ischemia in vitro and in vivo. Besides, knockdown of miR-337-3p protected OGD/R-induced apoptotic death of Neuro-2a cells. Furthermore, HOXA11-AS functioned as a competing endogenous RNA (ceRNA) and competed with Y box protein 1 (Ybx1) mRNA for directly binding to miR-337-3p, which protected ischemic neuronal death. Dex treatment protected against ischemic damage and improved overall neurological functions in vivo. Our data suggest a novel mechanism of Dex neuroprotection for ischemic stroke through regulating lncRNA HOXA11-AS by targeting the miR-337-3p/Ybx1 signaling pathway,...
Source: Aging - Category: Biomedical Science Authors: Source Type: research