Effect of RNA interference with glutamate decarboxylase on acid resistance of Trichinella spiralis

Acta Trop. 2023 Feb 25:106869. doi: 10.1016/j.actatropica.2023.106869. Online ahead of print.ABSTRACTTrichinella spiralis is a zoonotic parasite that infects most mammals, even humans. Glutamate decarboxylase (GAD) is an important enzyme in glutamate-dependent acid resistance system 2 (AR2), but the GAD of T. spiralis in AR2 is unclear. We aimed to investigate the role of T. spiralis glutamate decarboxylase (TsGAD) in AR2. We silenced the TsGAD gene to evaluate the AR of T. spiralis muscle larvae (ML) in vivo and in vitro via siRNA. The results showed that recombinant TsGAD was recognized by anti-rTsGAD polyclonal antibody (57 kDa), and qPCR indicated that TsGAD transcription peaked at pH 2.5 for 1 h compared to that with pH 6.6 phosphate-buffered saline. Indirect immunofluorescence assays revealed that TsGAD was expressed in the epidermis of ML. After TsGAD silencing in vitro, TsGAD transcription and the survival rate of ML decreased by 15.2% and 17%, respectively, compared with those of the PBS group. Both TsGAD enzymatic activity and the acid adjustment of siRNA1-silenced ML were weakened. In vivo, each mouse was orally infected with 300 siRNA1-silenced ML. On days 7 and 42 post-infection, the reduction rates of adult worms and ML were 31.5% and 49.05%, respectively. Additionally, the reproductive capacity index and larvae per gram of ML were 62.51±7.32 and 1250.22±146.48, respectively, lower than those of the PBS group. Haematoxylin-eosin staining revealed many inflamma...
Source: Acta Tropica - Category: Infectious Diseases Authors: Source Type: research