Development of Acute Transverse Myelitis following COVID-19 Infection: A Review on the Potential Pathways

Background: Acute transverse myelitis (ATM) is a rare neurological disorder in adults characterized by localized inflammation of gray and white matter in one or more contiguous spinal cord segments in the absence of a compressive injury. Several reports have connected the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the pathophysiology of ATM. Summary: Direct invasion of the spinal cord, cytokine storm, or an autoimmune response are the possible pathways by which the SARS-CoV-2 virus can affect the spinal cord and lead to ATM. Direct invasion is facilitated by the presence of angiotensin-converting enzyme 2 (ACE2) receptors on the membranes of the spinal cord neurons. Cytokine storm syndrome could be derived from elevated levels of several immunological factors following severe involvement with Coronavirus disease 2019 (COVID-19). Finally, autoimmune responses can cause post-infectious ATM through several hypothesized processes, including molecular mimicry, epitope spreading, bystander activation, and polyclonal B-cell activation. Key Messages: COVID-19-induced ATM is mostly a longitudinally-extensive ATM (LEATM) in which more spinal cord segments are damaged, which results in a worse sequel compared to short-segment ATM. Therefore, it is suggested that COVID-19 patients, particularly severe cases, be followed up for a probable incidence of ATM, even long after recovery from the disease and elimination of the virus from the host, because an early diagnosis...
Source: European Neurology - Category: Neurology Source Type: research