Exosomal ZEB1 Derived from Neural Stem Cells Reduces Inflammation Injury in OGD/R-Treated Microglia via the GPR30-TLR4-NF- κB Axis

Neurochem Res. 2023 Jan 30. doi: 10.1007/s11064-023-03866-3. Online ahead of print.ABSTRACTIschemic stroke (IS) is the most common type of stroke and the second leading cause of death overall. Neural stem cells play protective roles in IS, but the underlying mechanism remains to be determined. Neural stem cells (NSC) were obtained from the fetal brain tissue of C57BL/6J mice. NSC-derived exosomes (NSC-Exos) were identified in the conditioned medium. Internalization of NSC-Exos was analyzed by fluorescence microscopy. In vitro microglia ischemic stroke injury model was induced using oxygen glucose deprivation/re-oxygenation (OGD/R) method. Cell viability and inflammation were analyzed by MTT, qPCR, ELISA and Western blotting assay. Interaction between ZEB1 and the promoter of GPR30 was verified by luciferase assay and chromatin immunoprecipitation. NSC-Exos prevented OGD/R-mediated inhibition of cell survival and the production of inflammatory cytokines in microglia cells. NSC-Exos increased ZEB1 expression in OGD/R-treated microglia. Down-regulation of ZEB1 expression in NSC-Exos abolished NSC-Exos' protective effects on OGD/R-treated microglia. ZEB1 bound to the promoter region of GPR30 and promoted its expression. Inhibiting GPR30 reversed NSC-Exos effects on cell viability and inflammation injury in OGD/R-treated microglia. Our study demonstrated that NSC exerted cytoprotective roles through release of exosomal ZEB1,which transcriptionally upregulated GPR30 expression, res...
Source: Cell Research - Category: Cytology Authors: Source Type: research