Contribution of phosphate and FGF23 to CKD progression

Purpose of review Progressive forms of chronic kidney disease (CKD) exhibit kidney inflammation and fibrosis that drive continued nephron loss; however, factors responsible for the development of these common pathologic features remain poorly defined. Recent investigations suggest pathways involved in maintaining urinary phosphate excretion in CKD may be contributing to kidney function decline. This review provides an update on recent evidence linking altered phosphate homeostasis to CKD progression. Recent findings High dietary phosphate intake and increased serum concentrations of fibroblast growth factor 23 (FGF23) both increase urinary phosphate excretion and are associated with increased risk of kidney function decline. Recent investigations have discovered high concentrations of tubular phosphate promote phosphate-based nanocrystal formation that drives tubular injury, cyst formation, and fibrosis. Summary Studies presented in this review highlight important scientific discoveries that have molded our current understanding of the contribution of altered phosphate homeostasis to CKD progression. The collective observations from these investigations implicate phosphaturia, and the resulting formation of phosphate-based crystals in tubular fluid, as unique risk factors for kidney function decline. Developing a better understanding of the relationship between tubular phosphate handling and kidney pathology could result in innovative strategies for improvin...
Source: Current Opinion in Nephrology and Hypertension - Category: Urology & Nephrology Tags: MINERAL METABOLISM: Edited by Aline Martin and Tamara Isakova Source Type: research